Vertical Curves

David Levinson
Sag Vertical Curves

The selection of the minimum length of a sag vertical curve is controlled by:

- sight distance provided by the headlight (at night)
- rider comfort
- control of drainage
- general appearance
Headlight Criterion

The headlight is angled upward at an inclined angle (β), the headlight intersects the road at D, restricting the available sight distance to S. The values for H and β are 0.6m and 1 degree.

If $S > L$

$$L = 2S - \frac{200(H + S \tan \beta)}{A}$$

where $A =$ absolute difference in grade

If $S < L$

$$L = \frac{AS^2}{200(H + S \tan \beta)}$$
Stopping Sight Distance and Length of Sag Vertical Curve

Stopping Sight Distance vs. Length of Sag Vertical Curve

- Blue line: \(L (A=2) \)
- Red line: \(L (A=6) \)
Comfort Criterion

\[L > \frac{AV^2}{395} \]

where \(V \) is design speed in km/h and \(L \) in meters
Drainage Criterion

A grade of 0.35% percent be provided within 15m of the level point of the curve
California Appearance Criterion

$L_{\text{min}}=2V$

(if Design speed $(V) > 60 \text{ km/h}$)
Example 5: Minimum Length of a Sag Vertical Curve

A sag vertical curve is being designed to join a -2 percent grade to a plus 3 percent grade.

If the design speed is 60 km/h, determine the minimum length of the curve that will satisfy headlight criteria.

Assume $f=0.32$ and $\text{PRT} = 2.5 \text{ sec.}$
Solution (1/3)

Find the stopping sight distance

(0.03 is critical grade)

\[S = d_s = 0.278t, v + \frac{v^2}{254(f + G)} = 0.278(2.5)60 + \frac{60^2}{254(0.32 - 0.03)} = 41.7 + 48.9 = 90.57 m \]
Solution 2/3

Determine whether $S < L$ or $S > L$ for the headlight criterion.

If $S > L$

$$L = 2S - \frac{200(H + S\tan\beta)}{A} = 2 \times 90.57 - \frac{200((0.6) + 90.57(\tan(1^\circ)))}{5} = 181.14 - 87.2 = 93.94\ m$$

$L > S = 90.57$, oops
Solution 3/3

Determine whether $S < L$ or $S > L$ for the headlight criterion

If $S < L$

$$L = \frac{AS^2}{200(H + S\tan \beta)} = \frac{5(90.57)^2}{200((0.6) + 90.57 \tan(1^\circ))} = \frac{41014}{436.18} = 94\ m$$

Check,

So $S < L$
Problem: Design of a Sag Vertical Curve

A sag vertical curve joins a -2 percent grade with a +3 percent grade.

If the PVI of the grades is at metric station 57+550 and has an elevation of 75 meters, determine the station elevation of the PVC and PVT for a design speed of 100 km/hr, coefficient of friction = 0.28.
Solution (A)

For a design speed of 100 km/hr, coefficient of friction = 0.28

\[
S = d_s = 0.278t_v + \frac{v^2}{254(f \pm G)} = 0.278(2.5)100 + \frac{100^2}{254(0.28 - 0.03)} = 69.5 + 157 = 226m
\]

Length of Curve

\[
L = \frac{AS^2}{200(H + S \tan \beta)} = \frac{5(226)^2}{200\left((0.6) + 226 \tan \left(1^\circ \right)\right)} = \frac{255380}{908.97} = 281m
\]
Solution (B)

- Station of PVC = (57+550) - (140.5) = 57+409.5
- Station of PVT = (57+550) + (140.5) = 57+690.5
- Elevation of PVC = 75 + 0.02 * 140.5 = 77.81 m
- Elevation of PVT = 75 + 0.03 * 140.5 = 79.21 m
Questions

Questions?
Abbreviations

- PVI - Point of Vertical Intersection (sometimes VPI)
- PVC - Point of Vertical Curvature (sometimes VPC)
- PVT - Point of Vertical Tangency (sometimes VPT)
- SSD - Stopping sight distance (d_s) or (S)
Key Terms

- Sag vertical curve
- Crest vertical curve
Variables

- $y =$ Elevation of the curve at a distance x meters from the PVC (m)
- $c =$ elevation of PVC (m)
- $b = G_1$
- $a = (G_2 - G_1)/2L$
- $L =$ Length of the crest vertical curve (m)
- $S =$ Sight distance (m)
- $A =$ The change in grades ($|G_2 - G_1|$ as a percent)
- $h_1 =$ Height of the driver's eyes above the ground (m)
- $h_2 =$ Height of the object above the roadway (m)